Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 119(50): e2215600119, 2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2170860

ABSTRACT

The transmission of viruses between different host species is a major source of emerging diseases and is of particular concern in the case of zoonotic transmission from mammals to humans. Several zoonosis risk factors have been identified, but it is currently unclear which viral traits primarily determine this process as previous work has focused on a few hundred viruses that are not representative of actual viral diversity. Here, we investigate fundamental virological traits that influence cross-species transmissibility and zoonotic propensity by interrogating a database of over 12,000 mammalian virus-host associations. Our analysis reveals that enveloped viruses tend to infect more host species and are more likely to be zoonotic than nonenveloped viruses, while other viral traits such as genome composition, structure, size, or the viral replication compartment play a less obvious role. This contrasts with the previous notion that viral envelopes did not significantly impact or even reduce zoonotic risk and should help better prioritize outbreak prevention efforts. We suggest several mechanisms by which viral envelopes could promote cross-species transmissibility, including structural flexibility of receptor-binding proteins and evasion of viral entry barriers.

2.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: covidwho-1820425

ABSTRACT

The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.


Subject(s)
COVID-19 , Viruses, Unclassified , Viruses , Computational Biology , DNA Viruses , Humans , SARS-CoV-2
3.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1735052

ABSTRACT

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , New England/epidemiology , Public Health , SARS-CoV-2/genetics
4.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1330684

ABSTRACT

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/physiology , COVID-19/transmission , Databases as Topic , Disease Outbreaks , Humans , Louisiana/epidemiology , Phylogeny , Risk Factors , SARS-CoV-2/classification , Texas , Travel , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL